Two-dimensional Hubbard model: Numerical simulation study.
نویسنده
چکیده
We have studied the two-dimensional Hubbard model on a square lattice with nearest-neighbor hopping. We first discuss the properties of the model within the mean-field approximation: Because of the form of the band structure, some peculiar features are found. We then discuss the simulation algorithm used and compare simulation results with exact results for 6-site chains to test the reliability of the approach. We present results for thermodynamic properties and correlation functions for lattices up to 8&&8 in spatial size. The system is found to be an antiferromagnetic insulator for all values of the coupling constant at zero temperature in the half-filled-band case, but the long-range order is much smaller than predicted by mean-field theory. We perform a finitesize-scaling analysis to determine the character of the transition at zero coupling. For non-halffilled-band cases, our results suggest that the system is always paramagnetic, in contradiction with Hartree-Fock predictions. The system does not show tendency to ferromagnetism nor triplet superconductivity in the parameter range studied. We also discuss some properties of the attractive Hubbard model in the half-filled-band case.
منابع مشابه
Experimental study and numerical simulation of three dimensional two phase impinging jet flow using anisotropic turbulence model
Hydrodynamic of a turbulent impinging jet on a flat plate has been studied experimentally and numerically. Experiments were conducted for the Reynolds number range of 72000 to 102000 and a fixed jet-to-plate dimensionless distance of H/d=3.5. Based on the experimental setup, a multi-phase numerical model was simulated to predict flow properties of impinging jets using two turbulent models. Mesh...
متن کاملA Numerical Simulation Study on the Kinetics of Asphaltene Particle Flocculation in a Two-dimensional Shear Flow
In the current study, the kinetics of asphaltene particle flocculation is investigated under a shear flow through numerical simulation. The discrete element method (DEM) is coupled with computational fluid dynamics (CFD) to model the agglomeration and fragmentation processes. In addition, a coalescence model is proposed to consider the attachment of colliding particles. The changes in mean asph...
متن کاملNumerical simulation of flood wave propagation due to failure of dam watersheds in fluent model
By numerical simulation of the phenomenon of failure of dams and the flow of their flow, it is possible to design more precisely the structures and their location. The purpose of this study was to investigate the wave propagation phenomenon due to the failure of the rocky mortar-watering dam in the Marivan sub-basin of Zarivar in two-dimensional and three-dimensional models using the Fluent mod...
متن کاملNumerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method
n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...
متن کاملOptical conductivity of the one-dimensional dimerized Hubbard model at quarter filling
We investigate the optical conductivity in the Mott insulating phase of the one-dimensional extended Hubbard model with alternating hopping terms (dimerization) at quarter band filling. Optical spectra are calculated for the various parameter regimes using the dynamical density-matrix renormalization group method. The study of limiting cases allows us to explain the various structures found num...
متن کاملNumerical Methods for Quantum Monte Carlo Simulations of the Hubbard Model ∗
One of the core problems in materials science is how the interactions between electrons in a solid give rise to properties like ∗This work was partially supported by the National Science Foundation under Grant 0313390, and Department of Energy, Office of Science, SciDAC grant DEFC02 06ER25793. Wenbin Chen was also supported in part by the China Basic Research Program under the grant 2005CB32170...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. B, Condensed matter
دوره 31 7 شماره
صفحات -
تاریخ انتشار 1985